Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Interferon Cytokine Res ; 43(6): 257-268, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20242330

ABSTRACT

Despite extensive research to decipher the immunological basis of coronavirus disease (COVID-19), limited evidence on immunological correlates of COVID-19 severity from MENA region and Egypt was reported. In a single-center cross-sectional study, we have analyzed 25 cytokines that are related to immunopathologic lung injury, cytokine storm, and coagulopathy in plasma samples from 78 hospitalized Egyptian COVID-19 patients in Tanta University Quarantine Hospital and 21 healthy control volunteers between April 2020 and September 2020. The enrolled patients were divided into 4 categories based on disease severity, namely mild, moderate, severe, and critically ill. Interestingly, interleukin (IL)-1-α, IL-2Rα, IL-6, IL-8, IL-18, tumor necrosis factor-alpha (TNF-α), FGF1, CCL2, and CXC10 levels were significantly altered in severe and/or critically ill patients. Moreover, principal component analysis (PCA) demonstrated that severe and critically ill COVID-19 patients cluster based on specific cytokine signatures that distinguish them from mild and moderate COVID-19 patients. Specifically, levels of IL-2Rα, IL-6, IL-10, IL-18, TNF-α, FGF1, and CXCL10 largely contribute to the observed differences between early and late stages of COVID-19 disease. Our PCA showed that the described immunological markers positively correlate with high D-dimer and C-reactive protein levels and inversely correlate with lymphocyte counts in severe and critically ill patients. These data suggest a disordered immune regulation, particularly in severe and critically ill Egyptian COVID-19 patients, manifested as overactivated innate immune and dysregulated T-helper1 responses. Additionally, our study emphasizes the importance of cytokine profiling to identify potentially predictive immunological signatures of COVID-19 disease severity.


Subject(s)
COVID-19 , Cytokines , Humans , Interleukin-18 , Cross-Sectional Studies , Egypt , Interleukin-6 , Tumor Necrosis Factor-alpha , Critical Illness , Interleukin-2 Receptor alpha Subunit , Fibroblast Growth Factor 1 , Patient Acuity
2.
J Immunol ; 210(11): 1687-1699, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2300707

ABSTRACT

Although CD4+CD25+FOXP3+ regulatory T (TREG) cells have been studied in patients with COVID-19, changes in the TREG cell population have not been longitudinally examined during the course of COVID-19. In this study, we longitudinally investigated the quantitative and qualitative changes in the TREG cell population in patients with COVID-19. We found that the frequencies of total TREG cells and CD45RA-FOXP3hi activated TREG cells were significantly increased 15-28 d postsymptom onset in severe patients, but not in mild patients. TREG cells from severe patients exhibited not only increased proliferation but also enhanced apoptosis, suggesting functional derangement of the TREG cell population during severe COVID-19. The suppressive functions of the TREG cell population did not differ between patients with severe versus mild COVID-19. The frequency of TREG cells inversely correlated with SARS-CoV-2-specific cytokine production by CD4+ T cells and their polyfunctionality in patients with mild disease, suggesting that TREG cells are major regulators of virus-specific CD4+ T cell responses during mild COVID-19. However, such correlations were not observed in patients with severe disease. Thus, in this study, we describe distinctive changes in the TREG cell population in patients with severe and mild COVID-19. Our study provides a deep understanding of host immune responses upon SARS-CoV-2 infection in regard to TREG cells.


Subject(s)
COVID-19 , T-Lymphocytes, Regulatory , Humans , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Interleukin-2 Receptor alpha Subunit , Forkhead Transcription Factors
3.
Eur J Pediatr ; 181(6): 2299-2309, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1844370

ABSTRACT

Similar to hemophagocytic lymphohistiocytosis (HLH), some patients with SARS-CoV-2 have cytokine storm. Serum soluble interleukin-2 receptor (sCD25) and soluble CD163 (sCD163) are potential diagnostic biomarkers for HLH that help in guiding its treatment. This study was the first to investigate serum sCD25 and sCD163 levels in SARS-CoV-2. Serum sCD25 and sCD163 were measured by ELISA in 29 patients with SARS-CoV-2, aged between 2 months and 16 years (13 had COVID-19 and 16 had multisystem inflammatory syndrome in children (MIS-C)), in comparison to 30 age- and sex-matched healthy control children and 10 patients with HLH. Levels of these markers were re-measured in 21 patients with SARS-CoV-2 who were followed up 3 months after recovery. Patients with SARS-CoV-2 had significantly higher serum sCD25 and sCD163 than healthy control children (P < 0.001). SARS-CoV-2 patients had significantly higher sCD25 than patients with HLH (P < 0.05). Serum sCD25 was a good differentiating marker between patients with SARS-CoV-2 and HLH. Although there was a significant decrease of serum sCD25 and sCD163 of the 21 SARS-CoV-2 patients who were followed up, these levels were still significantly higher than the healthy controls levels (P < 0.001).  Conclusion: Serum sCD25 and sCD163 levels were up-regulated in SARS-CoV-2 patients. Serum sCD25 was a good differentiating marker between SARS-CoV-2 and HLH. This initial report requires further studies, on large scales, to investigate the relationship between SARS-CoV-2 and both sCD25 and sCD163, including the disease severity and outcome. The therapeutic role of sCD25 and sCD163 antagonists should also be studied in SARS-CoV-2 patients. What is Known: • Similar to hemophagocytic lymphohistiocytosis (HLH), some patients with COVID-19 have cytokine storm due to excessive pro-inflammatory host response. • Serum soluble interleukin-2 receptor (sCD25) and soluble CD163 (sCD163) are potential diagnostic biomarkers for HLH. Monitoring of serum sCD25 and sCD163 levels can also help in guiding the treatment. What is New: • Serum sCD25 and sCD163 levels are up-regulated in patients with COVID-19, including patients presenting with multisystem inflammatory syndrome in children (MIS-C). • Serum sCD25 is a good differentiating marker between SARS-CoV-2 and HLH.


Subject(s)
COVID-19 , Interleukin-2 Receptor alpha Subunit/blood , Lymphohistiocytosis, Hemophagocytic , Antigens, CD , Antigens, Differentiation, Myelomonocytic , Biomarkers , COVID-19/complications , COVID-19/diagnosis , Child , Cytokine Release Syndrome , Humans , Infant , Lymphohistiocytosis, Hemophagocytic/diagnosis , Receptors, Cell Surface , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
5.
Exp Biol Med (Maywood) ; 247(2): 145-151, 2022 01.
Article in English | MEDLINE | ID: covidwho-1438228

ABSTRACT

This study sought to evaluate the candidacy of plasma osteopontin (OPN) as a biomarker of COVID-19 severity and multisystem inflammatory condition in children (MIS-C) in children. A retrospective analysis of 26 children (0-21 years of age) admitted to Children's Healthcare of Atlanta with a diagnosis of COVID-19 between March 17 and May 26, 2020 was undertaken. The patients were classified into three categories based on COVID-19 severity levels: asymptomatic or minimally symptomatic (control population, admitted for other non-COVID-19 conditions), mild/moderate, and severe COVID-19. A fourth category of children met the Centers for Disease Control and Prevention's case definition for MIS-C. Residual blood samples were analyzed for OPN, a marker of inflammation using commercial ELISA kits (R&D), and results were correlated with clinical data. This study demonstrates that OPN levels are significantly elevated in children hospitalized with moderate and severe COVID-19 and MIS-C compared to OPN levels in mild/asymptomatic children. Further, OPN differentiated among clinical levels of severity in COVID-19, while other inflammatory markers including maximum erythrocyte sedimentation rate, C-reactive protein and ferritin, minimum lymphocyte and platelet counts, soluble interleukin-2R, and interleukin-6 did not. We conclude OPN is a potential biomarker of COVID-19 severity and MIS-C in children that may have future clinical utility. The specificity and positive predictive value of this marker for COVID-19 and MIS-C are areas for future larger prospective research studies.


Subject(s)
COVID-19/complications , Osteopontin/blood , Severity of Illness Index , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/diagnosis , Adolescent , Biomarkers/blood , Blood Sedimentation , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/diagnosis , COVID-19/pathology , Child , Child, Preschool , Female , Ferritins/blood , Humans , Infant , Infant, Newborn , Interleukin-2 Receptor alpha Subunit/blood , Interleukin-6/blood , Lymphocyte Count , Male , Platelet Count , Retrospective Studies , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/pathology , Young Adult
7.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: covidwho-1373495

ABSTRACT

The hallmark of severe COVID-19 is an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. We hypothesized that perturbations in FoxP3+ T regulatory cells (Treg), key enforcers of immune homeostasis, contribute to COVID-19 pathology. Cytometric and transcriptomic profiling revealed a distinct Treg phenotype in severe COVID-19 patients, with an increase in Treg proportions and intracellular levels of the lineage-defining transcription factor FoxP3, correlating with poor outcomes. These Tregs showed a distinct transcriptional signature, with overexpression of several suppressive effectors, but also proinflammatory molecules like interleukin (IL)-32, and a striking similarity to tumor-infiltrating Tregs that suppress antitumor responses. Most marked during acute severe disease, these traits persisted somewhat in convalescent patients. A screen for candidate agents revealed that IL-6 and IL-18 may individually contribute different facets of these COVID-19-linked perturbations. These results suggest that Tregs may play nefarious roles in COVID-19, by suppressing antiviral T cell responses during the severe phase of the disease, and by a direct proinflammatory role.


Subject(s)
COVID-19/etiology , T-Lymphocytes, Regulatory/physiology , Adult , Aged , CD4-Positive T-Lymphocytes/virology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Inflammation/metabolism , Inflammation/virology , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lymphocytes, Tumor-Infiltrating/physiology , Male , Middle Aged , Severity of Illness Index , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/virology , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Front Immunol ; 12: 655122, 2021.
Article in English | MEDLINE | ID: covidwho-1365539

ABSTRACT

FOXP3+ regulatory T cells (Tregs) are central for maintaining peripheral tolerance and immune homeostasis. Because of their immunosuppressive characteristics, Tregs are a potential therapeutic target in various diseases such as autoimmunity, transplantation and infectious diseases like COVID-19. Numerous studies are currently exploring the potential of adoptive Treg therapy in different disease settings and novel genome editing techniques like CRISPR/Cas will likely widen possibilities to strengthen its efficacy. However, robust and expeditious protocols for genome editing of human Tregs are limited. Here, we describe a rapid and effective protocol for reaching high genome editing efficiencies in human Tregs without compromising cell integrity, suitable for potential therapeutic applications. By deletion of IL2RA encoding for IL-2 receptor α-chain (CD25) in Tregs, we demonstrated the applicability of the method for downstream functional assays and highlighted the importance for CD25 for in vitro suppressive function of human Tregs. Moreover, deletion of IL6RA (CD126) in human Tregs elicits cytokine unresponsiveness and thus may prevent IL-6-mediated instability of Tregs, making it an attractive target to potentially boost functionality in settings of adoptive Treg therapies to contain overreaching inflammation or autoimmunity. Thus, our rapid and efficient protocol for genome editing in human Tregs may advance possibilities for Treg-based cellular therapies.


Subject(s)
Gene Editing/methods , Interleukin-2 Receptor alpha Subunit/genetics , Receptors, Interleukin-6/genetics , T-Lymphocytes, Regulatory/metabolism , Blood Buffy Coat/cytology , CRISPR-Cas Systems/genetics , Forkhead Transcription Factors/metabolism , Gene Knockdown Techniques , HEK293 Cells , Healthy Volunteers , Humans , Immunotherapy, Adoptive/methods , Primary Cell Culture , RNA, Guide, Kinetoplastida/genetics , Time Factors
9.
J Intern Med ; 290(3): 677-692, 2021 09.
Article in English | MEDLINE | ID: covidwho-1255442

ABSTRACT

BACKGROUND: Prognostic markers for disease severity and identification of therapeutic targets in COVID-19 are urgently needed. We have studied innate and adaptive immunity on protein and transcriptomic level in COVID-19 patients with different disease severity at admission and longitudinally during hospitalization. METHODS: Peripheral blood mononuclear cells (PBMCs) were collected at three time points from 31 patients included in the Norwegian SARS-CoV-2 cohort study and analysed by flow cytometry and RNA sequencing. Patients were grouped as either mild/moderate (n = 14), severe (n = 11) or critical (n = 6) disease in accordance with WHO guidelines and compared with patients with SARS-CoV-2-negative bacterial sepsis (n = 5) and healthy controls (n = 10). RESULTS: COVID-19 severity was characterized by decreased interleukin 7 receptor alpha chain (CD127) expression in naïve CD4 and CD8 T cells. Activation (CD25 and HLA-DR) and exhaustion (PD-1) markers on T cells were increased compared with controls, but comparable between COVID-19 severity groups. Non-classical monocytes and monocytic HLA-DR expression decreased whereas monocytic PD-L1 and CD142 expression increased with COVID-19 severity. RNA sequencing exhibited increased plasma B-cell activity in critical COVID-19 and yet predominantly reduced transcripts related to immune response pathways compared with milder disease. CONCLUSION: Critical COVID-19 seems to be characterized by an immune profile of activated and exhausted T cells and monocytes. This immune phenotype may influence the capacity to mount an efficient T-cell immune response. Plasma B-cell activity and calprotectin were higher in critical COVID-19 while most transcripts related to immune functions were reduced, in particular affecting B cells. The potential of these cells as therapeutic targets in COVID-19 should be further explored.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Leukocytes, Mononuclear/immunology , Transcriptome , Adaptive Immunity , Adult , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Female , HLA-DR Antigens/immunology , Humans , Immunity, Innate , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-7/immunology , Leukocyte L1 Antigen Complex/blood , Male , Middle Aged , Monocytes/immunology , Phenotype , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes, Regulatory/immunology , Thromboplastin/immunology , Thromboplastin/metabolism
10.
Cytokine ; 141: 155428, 2021 05.
Article in English | MEDLINE | ID: covidwho-1064991

ABSTRACT

Accumulating evidence supports that the viral-induced hyper-inflammatory immune response plays a central role in COVID-19 pathogenesis. It might be involved in the progression to acute respiratory distress syndrome (ARDS), multi-organ failure leading to death. In this study, we aimed to evaluate the prognostic value of the immune-inflammatory biomarkers in COVID-19, then determine optimal thresholds for assessing severe and fatal forms of this disease.153 patients with confirmed COVID-19 were included in this study, and classified into non-severe and severe groups. Plasmatic levels of interleukin 6 (IL6), C-reactive protein (CRP), soluble-IL2 receptor (IL2Rα), procalcitonin (PCT) and ferritin were measured using chemiluminescence assay. Complete blood count was performed by Convergys 3X® hematology analyzer. Our results demonstrated that the peripheral blood levels of IL6, PCT, CRP, ferritin, IL2Rα, white blood cell count (WBC), neutrophil count (NEU), neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (d-NLR) were significantly higher in severe forms of COVID-19. The ROC curve analysis showed that IL6 was the most accurate inflammatory biomarker. The calculated cutoff of IL6 (42 pg/ml) could correctly classify > 90% of patients regarding their risk of severity (area under ROC curve (AUROC) = 0.972) and the threshold value of 83 pg/ml was highly predictive of the progression to death (AUROC = 0.94, OR = 184) after a median of 3 days. Besides, IL-6 was positively correlated with other inflammatory markers and the kinetic analysis highlighted its value for monitoring COVID-19 patients. PCT and NLR had also a high prognostic relevance to assess severe forms of COVID-19 with corresponding AUROC of 0.856, 0.831 respectively. Furthermore the cut-off values of PCT (0.16 ng/ml) and NLR (7.4) allowed to predict mortality with high accuracy (se = 96.3%, sp = 70.5%,OR = 61.2)' (se = 75%, sp = 84%, OR = 14.6).The levels of these parameters were not influenced by corticosteroid treatment, which make them potential prognostic markers when patients are already undergoing steroid therapy.


Subject(s)
COVID-19/immunology , Interleukin-6/blood , Pandemics , Procalcitonin/blood , SARS-CoV-2 , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Algeria/epidemiology , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/mortality , Female , Ferritins/blood , Humans , Inflammation Mediators/blood , Interleukin-2 Receptor alpha Subunit/blood , Lymphocyte Count , Male , Middle Aged , Neutrophils/immunology , Predictive Value of Tests , Prognosis , Prospective Studies , Severity of Illness Index , Young Adult , COVID-19 Drug Treatment
11.
Cytokine ; 140: 155438, 2021 04.
Article in English | MEDLINE | ID: covidwho-1032450

ABSTRACT

BACKGROUND: Patients infected by SARS-CoV-2 can develop interstitial pneumonia, requiring hospitalisation or mechanical ventilation. Increased levels of inflammatory biomarkers are associated with development of acute respiratory distress syndrome (ARDS). The aim of the present study was to determine which cytokines are associated with respiratory insufficiency in patients hospitalised for COVID-19. PATIENTS AND METHODS: Data on 67 consecutive patients were collected between March 8 and March 30, 2020. PaO2/FiO2 ratio (P/F) was calculated at hospital admission. The following cytokines were analysed: interleukin (IL)-6, IL-1α, IL-18, tumour necrosis factor (TNF)-ß, macrophage colony-stimulating factor (M-CSF), macrophage migration inhibitory factor (MIF), soluble IL-2 receptor alpha (sIL-2Rα; CD25), IL-12ß, IL-3, interferon (IFN) α2a, monokine induced by gamma interferon (MIG), monocyte-chemotactic protein 3 (MCP3) and hepatocyte growth factor (HGF). RESULTS: P/F lower than 300 was recorded in 22 out of 67 patients (32.8%). P/F strongly correlated with IL-6 (r = -0.62, P < 0.0001), M-CSF (r = -0.63, P < 0.0001), sIL-2Rα (r = -0.54, P < 0.0001), and HGF (r = -0.53, P < 0.0001). ROC curve analyses for IL-6 (AUC 0.83, 95% CI 0.73-0.93, P < 0.0001), M-CSF (AUC 0.87, 95% CI 0.79-0.96, P < 0.0001), HGF (AUC 0.81, 95% CI 0.70-0.93, P < 0.0001), and sIL-2Rα (AUC 0.80, 95% CI, 0.69-0.90, P < 0.0001) showed that these four soluble factors were highly significant. All four soluble factors correlated with LDH, white blood cell count, neutrophil count, lymphocyte count, and CRP. CONCLUSION: IL-6, M-CSF, sIL-2Rα, and HGF are possibly involved in the main biological processes of severe COVID-19, mirroring the level of systemic hyperinflammatory state, the level of lung inflammation, and the severity of organ damage.


Subject(s)
COVID-19/blood , Cytokines/blood , Immunity, Innate/immunology , Inflammation/blood , Interleukin-2 Receptor alpha Subunit/blood , Multiple Organ Failure/blood , Pneumonia/blood , Aged , COVID-19/complications , COVID-19/virology , Female , Hepatocyte Growth Factor/blood , Host-Pathogen Interactions , Humans , Inflammation/complications , Interleukin-6/blood , Macrophage Colony-Stimulating Factor/blood , Male , Middle Aged , Multiple Organ Failure/complications , Pneumonia/complications , Pneumonia/virology , Retrospective Studies , SARS-CoV-2/physiology
12.
BMJ Open ; 10(11): e041471, 2020 11 30.
Article in English | MEDLINE | ID: covidwho-951588

ABSTRACT

OBJECTIVE: To delineate the characteristics and clinical significance of plasma inflammatory cytokines altered in COVID-19. DESIGN: Retrospective, single-centre cohort study. SETTING: Tongji Hospital in Wuhan, China. PARTICIPANTS: Among a cohort of 308 patients with a diagnosis of COVID-19, 138 patients died while 170 patients recovered and were discharged from the hospital. The data were collected until 27 February 2020. PRIMARY AND SECONDARY OUTCOME MEASURES: Clinical characteristics and laboratory findings were obtained from electronic medical records using data collection forms. RESULTS: The percentage of patients with elevated interleukin 2 receptor (IL-2R), IL-6, IL-8, IL-10 and tumour necrosis factor (TNF) increased with severity of disease (p<0.0001 for all). IL-2R (p<0.0001), IL-6 (p<0.0001), IL-8 (p=0.0001), IL-10 (p<0.0001) and TNF (p<0.0001) were also twofold to 20-fold higher in patients who died compared with those who recovered. Also, IL-6 and IL-10 increased in both the progressive patient groups: moderate (p=0.0026) and severe (p<0.0001). In multivariate analysis, higher levels of IL-2R (OR 1.001, 95% CI 1.000 to 1.002, p=0.031) and IL-6 (OR 1.013, 95% CI 1.003 to 1.024, p=0.015) on admission were associated with increasing odds of in-hospital death, independent of other covariates, including severity of disease and lymphocyte count. CONCLUSION: Increased proinflammatory and anti-inflammatory cytokines, including IL-2R, IL-6, IL-8, TNF and IL-10, showed an obvious association with both COVID-19 severity and in-hospital mortality. Thus, our study indicates that cytokines are valuable in predicting the severity of COVID-19 and helps in distinguishing critically ill patients from the less affected ones.


Subject(s)
COVID-19 , Critical Illness , Cytokines/blood , Hospital Mortality , Severity of Illness Index , Adult , Aged , COVID-19/blood , COVID-19/diagnosis , COVID-19/mortality , China , Female , Hospitals , Humans , Inflammation/blood , Inflammation/etiology , Interleukin-10/blood , Interleukin-2 Receptor alpha Subunit/blood , Lymphocyte Count , Male , Middle Aged , Pandemics , Prognosis , Retrospective Studies , SARS-CoV-2 , Tumor Necrosis Factor-alpha
13.
PLoS One ; 15(11): e0240784, 2020.
Article in English | MEDLINE | ID: covidwho-917987

ABSTRACT

Fatigue is a common symptom in those presenting with symptomatic COVID-19 infection. However, it is unknown if COVID-19 results in persistent fatigue in those recovered from acute infection. We examined the prevalence of fatigue in individuals recovered from the acute phase of COVID-19 illness using the Chalder Fatigue Score (CFQ-11). We further examined potential predictors of fatigue following COVID-19 infection, evaluating indicators of COVID-19 severity, markers of peripheral immune activation and circulating pro-inflammatory cytokines. Of 128 participants (49.5 ± 15 years; 54% female), more than half reported persistent fatigue (67/128; 52.3%) at median of 10 weeks after initial COVID-19 symptoms. There was no association between COVID-19 severity (need for inpatient admission, supplemental oxygen or critical care) and fatigue following COVID-19. Additionally, there was no association between routine laboratory markers of inflammation and cell turnover (leukocyte, neutrophil or lymphocyte counts, neutrophil-to-lymphocyte ratio, lactate dehydrogenase, C-reactive protein) or pro-inflammatory molecules (IL-6 or sCD25) and fatigue post COVID-19. Female gender and those with a pre-existing diagnosis of depression/anxiety were over-represented in those with fatigue. Our findings demonstrate a significant burden of post-viral fatigue in individuals with previous SARS-CoV-2 infection after the acute phase of COVID-19 illness. This study highlights the importance of assessing those recovering from COVID-19 for symptoms of severe fatigue, irrespective of severity of initial illness, and may identify a group worthy of further study and early intervention.


Subject(s)
Coronavirus Infections/pathology , Fatigue/etiology , Pneumonia, Viral/pathology , Adult , Aged , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/virology , Fatigue/epidemiology , Female , Humans , Interleukin-2 Receptor alpha Subunit/blood , Interleukin-6/blood , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Prevalence , SARS-CoV-2 , Severity of Illness Index
14.
Front Immunol ; 11: 589380, 2020.
Article in English | MEDLINE | ID: covidwho-909050

ABSTRACT

Severe COVID-19 patients show various immunological abnormalities including T-cell reduction and cytokine release syndrome, which can be fatal and is a major concern of the pandemic. However, it is poorly understood how T-cell dysregulation can contribute to the pathogenesis of severe COVID-19. Here we show single cell-level mechanisms for T-cell dysregulation in severe COVID-19, demonstrating new pathogenetic mechanisms of T-cell activation and differentiation underlying severe COVID-19. By in silico sorting CD4+ T-cells from a single cell RNA-seq dataset, we found that CD4+ T-cells were highly activated and showed unique differentiation pathways in the lung of severe COVID-19 patients. Notably, those T-cells in severe COVID-19 patients highly expressed immunoregulatory receptors and CD25, whilst repressing the expression of FOXP3. Furthermore, we show that CD25+ hyperactivated T-cells differentiate into multiple helper T-cell lineages, showing multifaceted effector T-cells with Th1 and Th2 characteristics. Lastly, we show that CD25-expressing hyperactivated T-cells produce the protease Furin, which facilitates the viral entry of SARS-CoV-2. Collectively, CD4+ T-cells from severe COVID-19 patients are hyperactivated and FOXP3-mediated negative feedback mechanisms are impaired in the lung, which may promote immunopathology. Therefore, our study proposes a new model of T-cell hyperactivation and paralysis that drives immunopathology in severe COVID-19.


Subject(s)
COVID-19/immunology , Lymphocyte Activation/immunology , Paralysis/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Single-Cell Analysis/methods , T-Lymphocytes, Regulatory/immunology , COVID-19/virology , Databases, Genetic , Forkhead Transcription Factors/metabolism , Furin/metabolism , Humans , Interleukin-2 Receptor alpha Subunit/metabolism , RNA-Seq , Receptors, Antigen, T-Cell/metabolism , Transcriptome , Virus Internalization
15.
J Cell Mol Med ; 24(19): 11603-11606, 2020 10.
Article in English | MEDLINE | ID: covidwho-884888

ABSTRACT

A novel pneumonia-associated respiratory syndrome named coronavirus disease-2019 (COVID-19), which was caused by SARS-CoV-2,broke out in Wuhan, China, in the end of 2019. Unfortunately, there is no specific antiviral agent or vaccine available to treat SARS-CoV-2 infections. The information regarding the immunological characteristics in COVID-19 patients remains limited. Here, we collected the blood samples from 18 healthy donors (HD) and 38 COVID-19 patients to analyze changes on γδ T cell population. In comparison with HD, the γδ T cell percentage decreased, while the activation marker CD25 expression increased in response to SARS-CoV-2 infection. Interestingly, the CD4 expression was upregulated in γδ T cells reflecting the occurrence of a specific effector cell population, which may serve as a biomarker for the assessment of SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections/immunology , Pneumonia, Viral/immunology , T-Lymphocyte Subsets/immunology , Adult , Betacoronavirus/physiology , Biomarkers , CD4 Antigens/metabolism , COVID-19 , China , Flow Cytometry , Humans , Immunity, Innate , Interleukin-2 Receptor alpha Subunit/metabolism , Pandemics , SARS-CoV-2 , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism
16.
Blood Adv ; 4(20): 5035-5039, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-873910

ABSTRACT

The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-driven coronavirus disease 2019 (COVID-19) has caused unprecedented human death and has seriously threatened the global economy. Early data suggest a surge in proinflammatory cytokines in patients with severe COVID-19, which has been associated with poor outcomes. We recently postulated that the inflammatory response in patients with severe COVID-19 disease is not inhibited by natural killer (NK) cells, resulting in a "cytokine storm." Here, we assessed the NK-cell functional activity and the associated cytokines and soluble mediators in hospitalized COVID-19 patients. Significantly impaired NK-cell counts and cytolytic activity were observed in COVID-19 patients when compared with healthy controls. Also, cytokines like interleukin 12 (IL12), IL15, and IL21 that are important for NK-cell activity were not detected systematically. Serum concentrations of soluble CD25 (sCD25)/soluble IL2 receptor α (sIL2-Rα) were significantly elevated and were inversely correlated with the percentage of NK cells. Impaired NK-cell cytolytic activity together with other laboratory trends including elevated sCD25 were consistent with a hyperinflammatory state in keeping with macrophage-activation syndrome. Our findings suggest that impaired counts and cytolytic activity of NK cells are important characteristics of severe COVID-19 and can potentially facilitate strategies for immunomodulatory therapies.


Subject(s)
Coronavirus Infections/immunology , Cytotoxicity, Immunologic , Killer Cells, Natural/immunology , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/blood , Female , Humans , Inflammation/blood , Inflammation/immunology , Interleukin-2 Receptor alpha Subunit/blood , Interleukin-2 Receptor alpha Subunit/immunology , Interleukins/blood , Interleukins/immunology , Lymphocyte Count , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , SARS-CoV-2 , Severity of Illness Index , Young Adult
17.
Immunol Res ; 68(6): 398-404, 2020 12.
Article in English | MEDLINE | ID: covidwho-808082

ABSTRACT

This single-center, retrospective study aimed to explore the immune characteristics of COVID-19 and biomarkers to predict the severity of this disease. Patients infected with SARS-CoV-2 (n = 215) treated at the First Affiliated Hospital of Nanchang University from January 24 to March 12, 2020, were included in the study and classified into severe and non-severe groups. Peripheral immunocyte count and cytokine statuses were compared. The correlation between immune status, cytokine levels, and disease severity was analyzed. Leukocyte numbers were normal in both groups; however, they were relatively high (7.19 × 109/L) in patients of the severe group. Leukocyte distributions differed between the two groups; the severe group had a higher percentage of neutrophils and lower percentage of lymphocytes compared with the non-severe group, and absolute lymphocyte numbers were below normal in both groups, and particularly deficient in patients in the severe group. Lymphocyte counts have negative correlation with duration of hospital period whereas neutrophil count has no significant correlation with it. Of tested cytokines, IL-6 levels were significantly higher in the severe group (P = 0.0418). Low level of lymphocyte predicts severity of COVID-19. IL-6 levels were significantly higher in the severe group, especially in some extremely severe patients. But we did not detect the significant correlation between severity of COVID-19 with IL-6 level which may be due to limited case numbers. Our observations encourage future research to understand the underlying molecular mechanisms and to improve treatment outcome of COVID-19.


Subject(s)
Coronavirus Infections/diagnosis , Interleukin-6/blood , Lymphocyte Count/statistics & numerical data , Pneumonia, Viral/diagnosis , Adult , Aged , Betacoronavirus/immunology , Biomarkers/analysis , COVID-19 , Coronavirus Infections/pathology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/pathology , Female , Humans , Interleukin-2 Receptor alpha Subunit/blood , Interleukin-8/blood , Length of Stay/statistics & numerical data , Male , Middle Aged , Neutrophils/immunology , Pandemics , Pneumonia, Viral/pathology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Treatment Outcome , Young Adult
18.
J Allergy Clin Immunol ; 147(1): 92-98, 2021 01.
Article in English | MEDLINE | ID: covidwho-779084

ABSTRACT

BACKGROUND: The pathogenesis of coronavirus disease 2019 (COVID-19) is still incompletely understood, but it seems to involve immune activation and immune dysregulation. OBJECTIVE: We examined the parameters of activation of different leukocyte subsets in COVID-19-infected patients in relation to disease severity. METHODS: We analyzed plasma levels of myeloperoxidase (a marker of neutrophil activation), soluble (s) CD25 (sCD25) and soluble T-cell immunoglobulin mucin domain-3 (sTIM-3) (markers of T-cell activation and exhaustion), and sCD14 and sCD163 (markers of monocyte/macrophage activation) in 39 COVID-19-infected patients at hospital admission and 2 additional times during the first 10 days in relation to their need for intensive care unit (ICU) treatment. RESULTS: Our major findings were as follows: (1) severe clinical outcome (ICU treatment) was associated with high plasma levels of sTIM-3 and myeloperoxidase, suggesting activated and potentially exhausted T cells and activated neutrophils, respectively; (2) in contrast, sCD14 and sCD163 showed no association with need for ICU treatment; and (3) levels of sCD25, sTIM-3, and myeloperoxidase were inversely correlated with degree of respiratory failure, as assessed by the ratio of Pao2 to fraction of inspired oxygen, and were positively correlated with the cardiac marker N-terminal pro-B-type natriuretic peptide. CONCLUSION: Our findings suggest that neutrophil activation and, in particular, activated T cells may play an important role in the pathogenesis of COVID-19 infection, suggesting that T-cell-targeted treatment options and downregulation of neutrophil activation could be of importance in this disorder.


Subject(s)
COVID-19/blood , Hepatitis A Virus Cellular Receptor 2/blood , SARS-CoV-2/metabolism , Aged , Antigens, CD/blood , Antigens, Differentiation, Myelomonocytic/blood , Female , Humans , Interleukin-2 Receptor alpha Subunit/blood , Lipopolysaccharide Receptors/blood , Lymphocyte Activation , Male , Middle Aged , Receptors, Cell Surface/blood , Severity of Illness Index , T-Lymphocytes/metabolism , Time Factors
19.
Clin Exp Immunol ; 201(1): 76-84, 2020 07.
Article in English | MEDLINE | ID: covidwho-628822

ABSTRACT

Effective laboratory markers for the estimation of disease severity and predicting the clinical progression of coronavirus disease-2019 (COVID-19) is urgently needed. Laboratory tests, including blood routine, cytokine profiles and infection markers, were collected from 389 confirmed COVID-19 patients. The included patients were classified into mild (n = 168), severe (n = 169) and critical groups (n = 52). The leukocytes, neutrophils, infection biomarkers [such as C-reactive protein (CRP), procalcitonin (PCT) and ferritin] and the concentrations of cytokines [interleukin (IL)-2R, IL-6, IL-8, IL-10 and tumor necrosis factor (TNF)-α] were significantly increased, while lymphocytes were significantly decreased with increased severity of illness. The amount of IL-2R was positively correlated with the other cytokines and negatively correlated with lymphocyte number. The ratio of IL-2R to lymphocytes was found to be remarkably increased in severe and critical patients. IL-2R/lymphocytes were superior compared with other markers for the identification of COVID-19 with critical illness, not only from mild but also from severe illness. Moreover, the cytokine profiles and IL-2R/lymphocytes were significantly decreased in recovered patients, but further increased in disease-deteriorated patients, which might be correlated with the outcome of COVID-19. Lymphopenia and increased levels of cytokines were closely associated with disease severity. The IL-2R/lymphocyte was a prominent biomarker for early identification of severe COVID-19 and predicting the clinical progression of the disease.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Interleukin-2 Receptor alpha Subunit/blood , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , T-Lymphocytes/virology , Aged , Aged, 80 and over , Betacoronavirus/immunology , Biomarkers/blood , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19 , China/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Disease Progression , Female , Ferritins/blood , Ferritins/immunology , Humans , Interleukin-10/blood , Interleukin-10/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-6/blood , Interleukin-6/immunology , Interleukin-8/blood , Interleukin-8/immunology , Leukocyte Count , Male , Middle Aged , Neutrophils/immunology , Neutrophils/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Procalcitonin/blood , Procalcitonin/immunology , Prognosis , SARS-CoV-2 , Severity of Illness Index , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL